Contents

1 Introduction 3
 1.1 About 3
 1.2 Loading the package 3
 1.3 Requirements 3
 1.4 Incompatible packages 3
 1.5 License 3
 1.6 Feedback 4

2 Incompatibilities between version 4

3 Package options 4

4 The components 6
 4.1 Monopoles 7
 4.2 Bipole 9
 4.2.1 Instruments 9
 4.2.2 Basic resistive bipoles 9
 4.2.3 Resistors and the like 10
 4.2.4 Diodes and such 11
 4.2.5 Other tripole-like diodes 14
 4.2.6 Basic dynamical bipoles 15
 4.2.7 Stationary sources 17
 4.2.8 Sinusoidal sources 18
 4.2.9 Special sources 18
 4.2.10 DC sources 18
 4.2.11 Mechanical Analogy 19
 4.2.12 Switch 19
 4.2.13 Block diagram components 20
 4.3 Tripole 22
 4.3.1 Controlled sources 22
 4.3.2 Transistors 23
 4.3.3 Electronic Tubes 27
 4.3.4 Block diagram 27
 4.3.5 Switch 28
 4.3.6 Electro-Mechanical Devices 28
 4.4 Double bipoles 29
1 Introduction

1.1 About
CircuiTi\k Z was initiated by Massimo Redaelli in 2007, who was working as a research assistant at the Polytechnic University of Milan, Italy, and needed a tool for creating exercises and exams. After he left University in 2010 the development of CircuiTi\k Z slowed down, since I\TeX is mainly established in the academic world. In 2015 Stefan Lindner and Stefan Erhardt, both working as research assistants at the University of Erlangen-Nürnberg, Germany, joined the team and now maintain the project together with the initial author.

The use of CircuiTi\k Z is, of course, not limited to academic teaching. The package gets widely used by engineers for typesetting electronic circuits for articles and publications all over the world.

This documentation is somewhat scant. Hopefully the authors will find the leisure to improve it some day.

1.2 Loading the package

\begin{tabular}{lc}
\texttt{\LaTeX} & \texttt{Con\TeXt}1 \\
\usepackage[circuitikz] & \usemodule{circuitikz} \\
\end{tabular}

TikZ will be automatically loaded.
CircuiTi\k Z commands are just TikZ commands, so a minimum usage example would be:

\begin{tikzpicture}
\draw (0,0) to[R=R_1] (2,0);
\end{tikzpicture}

1.3 Requirements

- \texttt{tikz}, version ≥ 3;
- \texttt{xstring}, not older than 2009/03/13;
- \texttt{siunitx}, if using \texttt{siunitx} option.

1.4 Incompatible packages

TikZ's own \texttt{circuit} library, which is based on CircuiTi\k Z, (re?)defines several styles used by this library. In order to have them work together you can use the \texttt{compatibility} package option, which basically prefixes the names of all CircuiTi\k Z \texttt{to[]} styles with an asterisk.

So, if loaded with said option, one must write \texttt{(0,0) to[*R] (2,0)} and, for transistors on a path, \texttt{(0,0) to[*Tnmos] (2,0)}, and so on (but \texttt{(0,0) node[nmos] {}}). See example at page 61.

1.5 License

Copyright © 2007–2017 Massimo Redaelli. This package is author-maintained. Permission is granted to copy, distribute and/or modify this software under the terms of the I\TeX Project Public License, version 1.3.1, or the GNU Public License. This software is provided ‘as is’, without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

1Con\TeX xt support was added mostly thanks to Mojca Miklavec and Aditya Mahajan.
1.6 Feedback

The easiest way to contact the authors is via the official Github repository: https://github.com/circuitikz/circuitikz/issues

2 Incompatibilities between version

Here, we will provide a list of incompatibilities between different versions of circuitikz. We will try to hold this list short, but sometimes it is easier to break with old syntax than including a lot of switches and compatibility layers. You can check the used version at your local installation using the macro \pgfcircversion{}.

- Since v0.8.2: voltage and current label directions\(v<= / i<=\) do NOT change the orientation of the drawn source shape anymore. Use the "invert" option to rotate the shape of the source. Furthermore, from this version on, the current label\(i=\) at current sources can be used independent of the regular label\(l=\).

- Since v0.7?: The label behaviour at mirrored bipoles has changes, this fixes the voltage drawing, but perhaps you have to adjust your label positions.

- Since v0.5.1: The parts pftet,pigfete,pigfetebulk and pigfetd are now mirrored by default. Please adjust your yscale-option to correct this.

- Since v0.5: New voltage counting direction, here exists an option to use the old behaviour

For older projects, you can use an older version locally using the git-version and picking the correct commit from the repository (branch gh-pages).

3 Package options

Circuit people are very opinionated about their symbols. In order to meet the individual gusto you can set a bunch of package options. The standard options are what the authors like, for example you get this:

\begin{circuitikz}
\draw (0,0) to[R=2\\ohm, i=?, v=84\\volt] (2,0) -- (2,2) to[V<=84\\volt] (0,2) -- (0,0);
\end{circuitikz}

Feel free to load the package with your own cultural options:

\begin{tabular}{ll}
\hline
\LaTeX & ConTeXt \\
\usepackage[american]{circuitikz} & \usemodule[circuitikz][american] \\
\hline
\end{tabular}
Here is the list of all the options:

- **europeanvoltages**: uses arrows to define voltages, and uses european-style voltage sources;
- **straightvoltages**: uses arrows to define voltages, and and uses straight voltage arrows;
- **americanvoltages**: uses − and + to define voltages, and uses american-style voltage sources;
- **europeancurrents**: uses european-style current sources;
- **americancurrents**: uses american-style current sources;
- **europeanresistors**: uses rectangular empty shape for resistors, as per european standards;
- **americanresistors**: uses zig-zag shape for resistors, as per american standards;
- **europeaninductors**: uses rectangular filled shape for inductors, as per european standards;
- **americaninductors**: uses "4-bumps" shape for inductors, as per american standards;
- **cuteinductors**: uses my personal favorite, "pig-tailed" shape for inductors;
- **americanports**: uses triangular logic ports, as per american standards;
- **europeanports**: uses rectangular logic ports, as per european standards;
- **americangfsurgearrester**: uses round gas filled surge arresters, as per american standards;
- **europeangfsurgearrester**: uses rectangular gas filled surge arresters, as per european standards;
- **european**: equivalent to **europeancurrents**, **europeanvoltages**, **europeanresistors**, **europeaninductors**, **europeanports**, **europeangfsurgearrester**;
- **american**: equivalent to **americancurrents**, **americanvoltages**, **americanresistors**, **americaninductors**, **americanports**, **americangfsurgearrester**;
- **siunitx**: integrates with **SIunitx** package. If labels, currents or voltages are of the form \#1<#2> then what is shown is actually \SI{#1}{#2};
- **nosiunitx**: labels are not interpreted as above;
- **fulldiode**: the various diodes are drawn and filled by default, i.e. when using styles such as `diode`, `D`, `sD`, ... Other diode styles can always be forced with e.g. `Do`, `D-`, ...
- **strokediode**: the various diodes are drawn and stroke by default, i.e. when using styles such as `diode`, `D`, `sD`, ... Other diode styles can always be forced with e.g. `Do`, `D*`, ...
- **emptydiode**: the various diodes are drawn but not filled by default, i.e. when using styles such as `D`, `sD`, ... Other diode styles can always be forced with e.g. `Do`, `D-`, ...
- **arrowmos**: pmos and nmos have arrows analogous to those of pnp and npn transistors;
- **noarrowmos**: pmos and nmos do not have arrows analogous to those of pnp and npn transistors;
- **fetbodydiode**: draw the body diode of a FET;
- **nofetbodydiode**: do not draw the body diode of a FET;
- **fetsolderdot**: draw solderdot at bulk-source junction of some transistors;
- **nofetsolderdot**: do not draw solderdot at bulk-source junction of some transistors;
- **emptypmoscircle**: the circle at the gate of a pmos transistor gets not filled;
- **lazymos**: draws lazy nmos and pmos transistors. Chip designers with huge circuits prefer this notation;
- **straightlabels**: labels on bipoles are always printed straight up, i.e. with horizontal baseline;
- **rotatelabels**: labels on bipoles are always printed aligned along the bipole;
- **smartlabels**: labels on bipoles are rotated along the bipoles, unless the rotation is very close to multiples of 90°;
- **compatibility**: makes it possible to load CircuiTi\textsc{k}Z and Ti\textsc{k}Z circuit library together.
- **oldvoltagedirection**: Use old(erronous) way of voltage direction having a difference between european and american direction
- **betterproportions**: nicer proportions of transistors in comparison to resistors;

The old options in the singular (like american_voltage) are still available for compatibility, but are discouraged.

Loading the package with no options is equivalent to my own personal liking, that is to the following options:

\begin{verbatim}
[nofetsolderdot,nooldvoltagedirection,europeancurrents,europeannvoltages,americanports,americanresistors,cuteinductors,europeangfsurgearrester,nosiunitx,noarrowmos,smartlabels,nocompatibility]
\end{verbatim}

In Con\TeXpt the options are similarly specified: \begin{verbatim}
current=\text{european}\text{|american},\voltage=\text{european}\text{|american},
\end{verbatim}
resistor=\text{american}\text{|european}, inductor=\text{cute}\text{|american}\text{|european},
\begin{verbatim}
logic=\text{american}\text{|european},
\end{verbatim}
\begin{verbatim}
siunitx=true\text{|false}, arrowmos=false\text{|true}.
\end{verbatim}

4 The components

Here follows the list of all the shapes defined by CircuiTi\textsc{k}Z. These are all \texttt{pgf} nodes, so they are usable in both \texttt{pgf} and Ti\textsc{k}Z.

Drawing normal components

Normal components (monopoles, multipoles) can be drawn at a specified point with this syntax, where \#1 is the name of the component:

\begin{verbatim}
\begin{center}\begin{circuitikz} \draw
(0,0) node[#1,#2] (#3) {#4} ; \end{circuitikz} \end{center}
\end{verbatim}

Explanation of the parameters:

\#1: component name\(^3\) (mandatory)

\#2: list of comma separated options (optional)

\#3: name of an anchor (optional)

\#4: text written to the text anchor of the component (optional)

\[Note	ext{ for TikZ newbies}\]: Nodes must have curly brackets at the end, even when empty. An optional anchor (\#3) can be defined within round brackets to be addressed again later on. And please don’t forget the semicolon to terminate the \texttt{\draw} command.

\[\text{May change in the future!}\]

\[\text{For using bipoles as nodes, the name of the node is } \#1\text{shape}.\]
Drawing bipoles/two-ports

Bipoles/Two-ports (plus some special components) can be drawn between two points using the following command:

\begin{center}\begin{circuitikz} \draw
(0,0) to[#1,#2] (2,0); \end{circuitikz} \end{center}

Explanation of the parameters:
#1: component name (mandatory)
#2: list of comma separated options (optional)

Transistors and some other components can also be placed using the syntax for bipoles. See section 6.6.

4.1 Monopoles

- Ground (node[ground]{}

- Reference ground (node[rground]{}

- Signal ground (node[sground]{}

- Thicker ground (node[tground]{}

- Noiseless ground (node[nground]{}

- Protective ground (node[pground]{}

- Chassis ground\(^4\) (node[cground]{}

\(^4\)These last three were contributed by Luigi «Liverpool»)
• Antenna (node|antenna|{}|

• Receiving antenna (node|rxantenna|{}|

• Transmitting antenna (node|txantenna|{}|

• Transmission line stub (node|tlinestub|{}|

• VCC/VDD (node|vcc|{}|

• VEE/VSS (node|vee|{}|

• match (node|match|{}}}
4.2 Bipoles

4.2.1 Instruments

- Ammeter (ammeter)

- Voltmeter (voltmeter)

- Ohmmeter (ohmmeter)

4.2.2 Basic resistive bipoles

- Short circuit (short)

- Open circuit (open)

- Lamp (lamp)

- Generic (symmetric) bipole (generic)

- Tunable generic bipole (tgeneric)

- Generic asymmetric bipole (ageneric)

- Generic asymmetric bipole (full) (fullgeneric)
• Tunable generic bipole (full) (tfullgeneric)

• Memristor (memristor, or Mr)

4.2.3 Resistors and the like

If (default behaviour) americanresistors option is active (or the style [american resistors] is used), the resistor is displayed as follows:

• Resistor (R, or american resistor)

• Variable resistor (vR, or variable american resistor)

• Potentiometer (pR, or american potentiometer)

If instead europeanresistors option is active (or the style [european resistors] is used), the resistors, variable resistors and potentiometers are displayed as follows:

• Resistor (R, or european resistor)

• Variable resistor (vR, or european variable resistor)

• Potentiometer (pR, or european potentiometer)

Other miscellaneous resistor-like devices:

• Varistor (varistor)
• Photoresistor (phR, or photoresistor)

• Thermocouple (thermocouple)

• Thermistor (thR, or thermistor)

• PTC thermistor (thRp, or thermistor ptc)

• NTC thermistor (thRn, or thermistor ntc)

• Fuse (fuse)

• Asymmetric fuse (afuse, or asymmetric fuse)

4.2.4 Diodes and such
• Empty diode (empty diode, or Do)

• Empty Schottky diode (empty Schottky diode, or sDo)

• Empty Zener diode (empty Zener diode, or zDo)

• Empty ZZener diode (empty ZZener diode, or zzDo)
- Empty tunnel diode (empty tunnel diode, or tDo)
- Empty photodiode (empty photodiode, or pDo)
- Empty led (empty led, or leDo)
- Empty varcap (empty varcap, or VCo)
- Full diode (full diode, or D*)
- Full Schottky diode (full Schottky diode, or sD*)
- Full Zener diode (full Zener diode, or zD*)
- Full ZZener diode (full ZZener diode, or zzD*)
- Full tunnel diode (full tunnel diode, or tD*)
- Full photodiode (full photodiode, or pD*)
• Full led (full led, or leD*)

• Full varcap (full varcap, or VC*)

• Stroke diode (stroke diode, or D–)

• Stroke Schottky diode (stroke Schottky diode, or sD–)

• Stroke Zener diode (stroke Zener diode, or zD–)

• Stroke ZZener diode (stroke ZZener diode, or zzD–)

• Stroke tunnel diode (stroke tunnel diode, or tD–)

• Stroke photodiode (stroke photodiode, or pD–)

• Stroke led (stroke led, or leD–)

• Stroke varcap (stroke varcap, or VC–)
4.2.5 Other tripole-like diodes

The following tripoles are entered with the usual command of the form

- Standard triac (shape depends on package option) \((\text{triac, or Tr})\)

- Empty triac (\(\text{empty triac, or Tro}\))

- Full triac (\(\text{full triac, or Tr}\))

- Standard thyristor (shape depends on package option) \((\text{thyristor, or Ty})\)

- Empty thyristor (\(\text{empty thyristor, or Tyo}\))

- Full thyristor (\(\text{full thyristor, or Ty}\))

- Stroke thyristor (\(\text{stroke thyristor, or Ty}\))

See chapter 6.1.3 for information how access the third connector.
• Squid (squid)

• Barrier (barrier)

• European gas filled surge arrester (european gas filled surge arrester)

• American gas filled surge arrester (american gas filled surge arrester)

If (default behaviour) `europeangfsurgearrester` option is active (or the style [european gas filled surge arrester] is used), the shorthands `gas filled surge arrester` and `gf surge arrester` are equivalent to the european version of the component.

If otherwise `americangfsurgearrester` option is active (or the style [american gas filled surge arrester] is used), the shorthands the shorthands `gas filled surge arrester` and `gf surge arrester` are equivalent to the american version of the component.

4.2.6 Basic dynamical bipoles

• Capacitor (capacitor, or C)

• Polar capacitor (polar capacitor, or pC)

• Electrolytic capacitor (ecapacitor, or eC,elko)

• Variable capacitor (variable capacitor, or vC)

• Piezoelectric Element (piezoelectric, or PZ)
If (default behaviour) `cuteinductors` option is active (or the style `[cute inductors]` is used), the inductors are displayed as follows:

- Inductor (L, or `cute inductor`)

- Variable inductor (vL, or `variable cute inductor`)

If `americaninductors` option is active (or the style `[american inductors]` is used), the inductors are displayed as follows:

- Inductor (L, or `american inductor`)

- Variable inductor (vL, or `variable american inductor`)

Finally, if `europeaninductors` option is active (or the style `[european inductors]` is used), the inductors are displayed as follows:

- Inductor (L, or `european inductor`)

- Variable inductor (vL, or `variable european inductor`)

There is also a transmission line:

- Transmission line (TL, or `transmission line`, `tline`)
4.2.7 Stationary sources

- Battery (battery)

- Single battery cell (battery1)

- Single battery cell (battery2)

- Voltage source (european style) (european voltage source)

- Voltage source (american style) (american voltage source)

- Current source (european style) (european current source)

- Current source (american style) (american current source)

If (default behaviour) european currents option is active (or the style [european currents] is used), the shorthands current source, isource, and I are equivalent to european current source. Otherwise, if americancurrents option is active (or the style [american currents] is used) they are equivalent to american current source.

Similarly, if (default behaviour) european voltages option is active (or the style [european voltages] is used), the shorthands voltage source, vsource, and V are equivalent to european voltage source. Otherwise, if americannvoltages option is active (or the style [american voltages] is used) they are equivalent to american voltage source.
4.2.8 Sinusoidal sources
Here because I was asked for them. But how do you distinguish one from the other?!

- Sinusoidal voltage source (sinusoidal voltage source, or \textit{vsourcesin}, \textit{sV})

- Sinusoidal current source (sinusoidal current source, or \textit{isourcesin}, \textit{sI})

4.2.9 Special sources

- Square voltage source (square voltage source, or \textit{vsourcesquare}, \textit{sqV})

- Triangle voltage source (\textit{vsourcetri}, or \textit{tV})

- Empty voltage source (\textit{esource})

- Photovoltaic-voltage source (\textit{pvsource})

- Double Zero style current source (\textit{ioosource})

- Double Zero style voltage source (\textit{voosource})

4.2.10 DC sources

- DC voltage source (\textit{dcvsource})

- DC current source (\textit{dcisource})
4.2.11 Mechanical Analogy
- Mechanical Damping (damper)

- Mechanical Stiffness (spring)

- Mechanical Mass (mass)

4.2.12 Switch
- Switch (switch, or spst)

- Closing switch (closing switch, or cspst)

- Opening switch (opening switch, or ospst)

- Normally open switch (normal open switch, or nos)

- Normally closed switch (normal closed switch, or ncs)

- Push button (push button)
4.2.13 Block diagram components
Contributed by Stefan Erhardt.

- generic two port\(^5\) \((\text{twoport})\)

- vco \((\text{vco})\)

- bandpass \((\text{bandpass})\)

- bandstop \((\text{bandstop})\)

- highpass \((\text{highpass})\)

- lowpass \((\text{lowpass})\)

- A/D converter \((\text{adc})\)

- D/A converter \((\text{dac})\)

- DSP \((\text{dsp})\)

\(^5\)To specify text to be put in the component: \text{twoport}[t=\text{text}]:
- FFT (fft)
- amplifier (amp)
- VGA (vamp)
- π attenuator (piattenuator)
- var. π attenuator (vpiattenuator)
- T attenuator (tattenuator)
- var. T attenuator (vtattenuator)
- phase shifter (phaseshifter)
- var. phase shifter (vphaseshifter)
- detector (detector)
4.3 Tripoles

4.3.1 Controlled sources

Admittedly, graphically they are bipoles. But I couldn’t...

- Controlled voltage source (european style) *(european controlled voltage source)*

- Controlled voltage source (american style) *(american controlled voltage source)*

- Controlled current source (european style) *(european controlled current source)*

- Controlled current source (american style) *(american controlled current source)*

If (default behaviour) `europeancurrents` option is active (or the style `[european currents]` is used), the shorthands `controlled current source`, `cisource`, and `cI` are equivalent to `european controlled current source`. Otherwise, if `americancurrents` option is active (or the style `[american currents]` is used) they are equivalent to `american controlled current source`.

Similarly, if (default behaviour) `europeanvoltages` option is active (or the style `[european voltages]` is used), the shorthands `controlled voltage source`, `cvsource`, and `cV` are equivalent to `european controlled voltage source`. Otherwise, if `americanvoltages` option is active (or the style `[american voltages]` is used) they are equivalent to `american controlled voltage source`.

- Controlled sinusoidal voltage source *(controlled sinusoidal voltage source, or controlled vsourcesin, cvsourcesin, csV)*

- Controlled sinusoidal current source *(controlled sinusoidal current source, or controlled isourcesin, cisourcesin, csI)*
4.3.2 Transistors

- NMOS (node[nmos]{})

- PMOS (node[pmos]{})

- NPN (node[npn]{}

- PNP (node[pnp]{}

- NPN (node[npn,photo]{}

- PNP (node[pnp,photo]{}

- NIGBT (node[nigbt]{}

- PIGBT (node[pigbt]{})
For all transistors a bodydiode (or freewheeling diode) can automatically be drawn. Just use the global option bodydiode, or for single transistors, the tikz-option bodydiode:

```
\begin{circuitikz}
\draw (0,0) node[npn,bodydiode](npn){}++(2,0)node[pnp, bodydiode](npn){};
\draw (0,-2) node[nigbt,bodydiode](npn){}++(2,0)node[pigbt, bodydiode](npn){};
\draw (0,-4) node[nfet,bodydiode](npn){}++(2,0)node[pfet, bodydiode](npn){};
\end{circuitikz}
```

The Base/Gate connection of all transistors can be disable by using the options \texttt{nogate} or \texttt{nobase}, respectively. The Base/Gate anchors are floating, but there an additional anchor “nogate”/”nobase”, which can be used to point to the unconnected base:

```
\begin{circuitikz}
\draw (2,0) node[npn,nobase](npn){};
\draw (npn.E) node[below]{E};
\draw (npn.C) node[above]{C};
\draw (npn.B) node[circ]{} node[left]{B};
\draw[dashed,red,-latex] (1,0.5)--(npn.nobase);
\end{circuitikz}
```

If the option \texttt{arrowmos} is used (or after the command \texttt{\ctikzset{tripoles/mos style/arrows}} is given), this is the output:

- \texttt{N莫斯 (node[nmos]{}{})}
To draw the PMOS circle non-solid, use the option `emptycircle` or the command `\ctikzset{tripoles/pmos style/emptycircle}`.

- PMOS (node[pmos,emptycircle]{})

NFETS and PFETS have been incorporated based on code provided by Clemens Helfmeier and Theodor Borsche. Use the package options `fetsolderdot/nofetsolderdot` to enable/disable solderdot at some fet-transistors. Additionally, the solderdot option can be enabled/disabled for single transistors with the option "solderdot" and "nosolderdot", respectively.

- NFET (node[nfet]{})

- NIGFETE (node[nigfete]{})

- NIGFETE (node[nigfete,solderdot]{})

- NIGFETEBULK (node[nigfetebulk]{})
• NIGFETD (node[nigfetd]\{\})

• PFET (node[pfet]\{\})

• PIGFETE (node[pigfete]\{\})

• PIGFETEBULK (node[pigfetebulk]\{\})

• PIGFETD (node[pigfetd]\{\})

NJFET and PJFET have been incorporated based on code provided by Danilo Piazzalunga:
• NJFET (node[njfet]\{\})

• PJFET (node[pjfet]\{\})

ISFET
• ISFET (node[isfet]\{\})
4.3.3 Electronic Tubes

- Magnetron (node[magnetron]{})

![Circuit diagram of a magnetron](image)

\begin{circuitikz}
\draw (0,-2)node[rground](gnd){} to[voltage source,v<={(HV)}]++(0,3) --+(1,0)to[V,n=DC]++(2,0);
\draw (2,-1) node[magnetron,scale=1](magn){};
\draw (DC.left)++(-0.2,0)to[short,*-]++(0,-1) to[short] (magn.cathode1);
\draw (DC.right)++(0.2,0)to[short,*-]++(0,-1) to[short] (magn.cathode2);
\draw (magn.anode) to[short] (magn.anode|-gnd) node[rground]{};
\draw (magn.cathode1)node[above]{1};
\draw (magn.cathode2)node[above]{2};
\draw[->](magn.east) --++(1,0)node[right]{RF_{out}};
\end{circuitikz}

4.3.4 Block diagram

These come from Stefan Erhardt’s contribution of block diagram components. Add a box around them with the option box.

- MIXER (node[mixer]{})

![Mixer symbol](image)

- ADDER (node[adder]{})

![Adder symbol](image)

- OSCILLATOR (node[oscillator]{})

![Oscillator symbol](image)

- CIRCULATOR (node[circulator]{})

![Circulator symbol](image)
• **WILKINSON DIVIDER** *(node[wilkinson]{})*

![Wilkinson Divider Diagram]

4.3.5 **Switch**

• **SPDT** *(node[spdt]{})*

![SPDT Diagram]

• **Toggle switch** *(toggle switch)*

![Toggle Switch Diagram]

4.3.6 **Electro-Mechanical Devices**

• **Motor** *(node[elmech]{M})*

![Motor Diagram]

• **Generator** *(node[elmech]{G})*

![Generator Diagram]

\begin{circuitikz}
 \draw (2,0) node[elmech](motor){M};
 \draw (motor.north) |- (0,2) to [R] ++(0,-2) to [dcvsourcenode midway, above]{ω};
 \draw[thick,->>](motor.right)--++(1,0)node[midway, above]{ω};
\end{circuitikz}

\begin{circuitikz}
 \draw (2,0) node[elmech](motor){};
 \draw (motor.north) |- (0,2) to [R] ++(0,-2) to [dcvsourcenode midway, above]{ω};
 \draw[thick,->>](motor.center)--++(1.5,0)node[midway, above]{ω};
\end{circuitikz}
The symbols can also be used along a path, using the transistor-path-syntax (T in front of the shape name, see section 6.6). Don’t forget to use parameter n to name the node and get access to the anchors:

```latex
\begin{circuitikz}
\draw (0,0) to [Telmech=M,n=motor] ++(0,-3) to [Telmech=M] ++(3,0) to [Telmech=G,n=generator] ++(0,3) to [R] (0,0);
\draw[thick,->>](motor.left)--(generator.left)node[midway,above]{$\omega$};
\end{circuitikz}
```

4.4 Double bipoles

Transformers automatically use the inductor shape currently selected. These are the three possibilities:

- Transformer (cute inductor) (node[transformer]{}))

- Transformer (american inductor) (node[transformer]{}))

- Transformer (european inductor) (node[transformer]{}))

Transformers with core are also available:

- Transformer core (cute inductor) (node[transformer core]{}))
• Transformer core (american inductor) (node[transformer core][{}])

• Transformer core (european inductor) (node[transformer core][{}])

• Gyrator (node[gyrator][{}])

• Coupler (node[coupler][{}])

• Coupler, 2 (node[coupler2][{}])

4.5 Logic gates
4.5.1 American Logic gates

• American AND port (node[american and port][{}])

• American OR port (node[american or port][{}])
• American NOT port (node\{american not port\})

• American NAND port (node\{american nand port\})

• American NOR port (node\{american nor port\})

• American XOR port (node\{american xor port\})

• American XNOR port (node\{american xnor port\})

4.5.2 European Logic gates

• European AND port (node\{european and port\})

• European OR port (node\{european or port\})

• European NOT port (node\{european not port\})
• European NAND port (node[european nand port]{})

• European NOR port (node[european nor port]{})

• European XOR port (node[european xor port]{})

• European XNOR port (node[european xnor port]{})

If (default behaviour) americanports option is active (or the style [american ports] is used), the shorthands and port, or port, not port, nand port, not port, xor port, and xnor port are equivalent to the american version of the respective logic port.

If otherwise europeanports option is active (or the style [european ports] is used), the shorthands and port, or port, not port, nand port, not port, xor port, and xnor port are equivalent to the european version of the respective logic port.

• Non-Inverting SCHMITTTRIGGER (node[schmitt]{})

• Inverting SCHMITTTRIGGER (node[invschmitt]{})

4.6 Amplifiers

• Operational amplifier (node[op amp]{}
- Operational amplifier compliant to DIN/EN 60617 standard (node[en amp]{})

- Fully differential operational amplifier\(^6\) (node[fd op amp]{})

- Transconductance amplifier (node[gm amp]{})

- Plain amplifier (node[plain amp]{})

- Buffer (node[buffer]{})

4.7 Support shapes

- Arrows (current and voltage) (node[currarrow]{})

- Arrow to draw at its tip, useful for block diagrams. (node[inputarrow]{})

- Connected terminal (node[circ]{})

\(^6\)Contributed by Kristofer M. Monisit.
• Unconnected terminal (node\textcircled{o})

• Diamond-style terminal (node\textcircled{diamondpole})

5 Usage

\begin{circuitikz}
\draw (0,0) to[R, l=R_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R=R_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, i=i_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, v=v_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R=R_1, i=i_1, v=v_1] (2,0);
\end{circuitikz}

Long names/styles for the bipoles can be used:

\begin{circuitikz}
\draw (0,0) to[resistor=1<\kilo\ohm>] (2,0)
\end{circuitikz}

5.1 Labels and Annotations

Since Version 0.7, beside the original label (l) option, there is a new option to place a second label, called annotation (a) at each bipole. Up to now this is a beta-test and there can be problems. For example, up to now this option is not compatible with the concurrent use of voltage labels.

The position of (a) and (l) labels can be adjusted with _ and ^, respectively.

\begin{circuitikz}
\draw (0,0) to[R, l=R_1, a=1<\kilo\ohm>] (2,0);
\end{circuitikz}
The default orientation of labels is controlled by the options `smartlabels`, `rotatelabels` and `straightlabels` (or the corresponding `label/align` keys). Here are examples to see the differences:

```latex
\begin{circuitikz}
\ctikzset{label/align = straight}
\def\DIR{0,45,90,135,180,-90,-45,-135}
\foreach \i in \DIR {
  \draw (0,0) to[R=\i, *-o] (\i:2.5);
}
\end{circuitikz}
```

```latex
\begin{circuitikz}
\ctikzset{label/align = rotate}
\def\DIR{0,45,90,135,180,-90,-45,-135}
\foreach \i in \DIR {
  \draw (0,0) to[R=\i, *-o] (\i:2.5);
}
\end{circuitikz}
```

```latex
\begin{circuitikz}
\ctikzset{label/align = smart}
\def\DIR{0,45,90,135,180,-90,-45,-135}
\foreach \i in \DIR {
  \draw (0,0) to[R=\i, *-o] (\i:2.5);
}
\end{circuitikz}
```

5.2 Currents

The counting direction of currents and voltages have changed with version 0.5, for compatibility reasons there is a option to use the old directions (see options). For the new scheme, the following rules apply:
• **Normal bipoles:** currents and voltages are counted positiv in drawing direction.

• **Current Sources:** current is counted positiv in drawing direction, voltage in opposite direction

• **Voltage Sources:** voltage is counted positiv in drawing direction, current in opposite direction

With this convention, the power at loads is positive and negative at sources.

```
\begin{circuitikz}
  \draw (0,0) to[R, i^>=$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i_>$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i^<=$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i<_=$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i>^=$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i>_=$i_1$] (2,0);
\end{circuitikz}
```

Also

```
\begin{circuitikz}
  \draw (0,0) to[R, i<=$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i>=$i_1$] (2,0);
\end{circuitikz}
```

```
\begin{circuitikz}
  \draw (0,0) to[R, i^=$i_1$] (2,0);
\end{circuitikz}
```
5.3 Flows

As an alternative for the current arrows, you can also use the following flows. They can also be used to indicate thermal or power flows. The syntax is pretty the same as for currents.

This is a new beta feature since version 0.8.3, therefore, please provide bug reports or hints to optimize this feature regarding placement and appearance! This means, that the appearance may change in the future!
5.4 Voltages

See introduction note at Currents (chapter 5.2, page 35).

5.4.1 European style

The default, with arrows. Use option `europeanvoltage` or style `[european voltages].

\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v^>=v_1] (2,0);
\end{circuitikz}

\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v^<=v_1] (2,0);
\end{circuitikz}

\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v^>=v_1] (2,0);
\end{circuitikz}

\begin{circuitikz}[european voltages]
\draw (0,0) to[R, v^<=v_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[V=10V, i_=i_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[V<=10V, i_=i_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[I=1A, v_=u_1] (2,0);
\end{circuitikz}
5.4.2 American style

For those who like it (not me). Use option `americanvoltage` or set `[american voltages].

5.5 Nodes
\begin{circuitikz}
\draw (0,0) to[R, o-] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, *-*] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, -*] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, *-] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, d-d] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, -d] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, d-] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, o-*] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, *-o] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, o-d] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, d-o] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, *-d] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[R, d-*] (2,0);
\end{circuitikz}
5.6 Special components

For some components label, current and voltage behave as one would expect:

\begin{circuitikz}
\draw (0,0) to[I=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[I, i=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[cI=$k \cdot a_1$] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[sI=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[csI=$k \cdot a_1$] (2,0);
\end{circuitikz}

The following results from using the option americancurrent or using the style [americancurrents].

\begin{circuitikz}[americancurrents]
\draw (0,0) to[I=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}[americancurrents]
\draw (0,0) to[I, i=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}[americancurrents]
\draw (0,0) to[cI=$k \cdot a_1$] (2,0);
\end{circuitikz}

\begin{circuitikz}[americancurrents]
\draw (0,0) to[sI=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}[americancurrents]
\draw (0,0) to[csI=$k \cdot a_1$] (2,0);
\end{circuitikz}

The same holds for voltage sources:

\begin{circuitikz}
\draw (0,0) to[V=a_1] (2,0);
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) to[V, v=a_1] (2,0);
\end{circuitikz}
The following results from using the option \texttt{american voltage} or the style \texttt{[american voltages]}.

\begin{circuitikz}[american voltages]
\draw (0,0) to [V=a_1] (2,0);
\end{circuitikz}
\begin{circuitikz}[american voltages]
\draw (0,0) to [V, v=a_1] (2,0);
\end{circuitikz}
\begin{circuitikz}[american voltages]
\draw (0,0) to [csV=$k v_e$] (2,0);
\end{circuitikz}
\begin{circuitikz}[american voltages]
\draw (0,0) to [sV=a_1] (2,0);
\end{circuitikz}
\begin{circuitikz}[american voltages]
\draw (0,0) to [csV=$k v_e$] (2,0);
\end{circuitikz}

5.7 Integration with \texttt{siunitx}

If the option \texttt{siunitx} is active (and \texttt{not} in Con\TeX), then the following are equivalent:

\begin{circuitikz}
\draw (0,0) to [R, l=$1\kilo\ohm$] (2,0);
\end{circuitikz}
\begin{circuitikz}
\draw (0,0) to [R, l=$1\SI{\kilo\ohm}$] (2,0);
\end{circuitikz}
\begin{circuitikz}
\draw (0,0) to [R, l=1\kilo\ohm] (2,0);
\end{circuitikz}
\begin{circuitikz}
\draw (0,0) to [R, l=$\SI{1}{\kilo\ohm}$] (2,0);
\end{circuitikz}
\begin{circuitikz}
\draw (0,0) to [R, i=1\milli\ampere] (2,0);
\end{circuitikz}

42
5.8 Mirroring and Inverting

Bipole paths can also be mirrored and inverted (or reverted) to change the drawing direction.

5.9 Putting them together
5.10 Line joins between Path Components

Line joins should be calculated correctly, if the were on the same path and if the path is not closed. For example, the following path is not closed correctly (\texttt{-cycle} does not work here!):

\begin{circuitikz}
 \draw (0,0) to[R]++(2,0) to[R]++(0,2) --++(-2,0) to[R]++(0,-2);
 \draw[red,line width=1pt] circle(2mm);
\end{circuitikz}

To correct the line ending, there are support shapes to fill the missing rectangle. They can be used like the support shapes (*, o, d) using a dot (.) on one or both ends of a component (have a look at the last resistor in this example):

\begin{circuitikz}
 \draw (0,0) to[R,-.]++(0,-2);
 \draw[red,line width=1pt] circle(2mm);
\end{circuitikz}

6 Not only bipoles

Since only bipoles (but see section 6.6) can be placed "along a line", components with more than two terminals are placed as nodes:

\begin{circuitikz}
 \draw (0,0) node[npn](nnp) at (0,0) {};
 \draw (nnp.C) --+(0,0.5) node[vcc]{+5,\textnormal{\texttt{V}}};
 \draw (nnp.E) --+(0,-0.5) node[vee]{-5,\textnormal{\texttt{V}}};
\end{circuitikz}

6.1 Anchors

In order to allow connections with other components, all components define anchors.

6.1.1 Logical ports

All logical ports, except \texttt{NOT}, have two inputs and one output. They are called respectively in 1, in 2, out:
\begin{circuitikz}
\draw
(0,0) node[and port] (myand) {}
(myand.in 1) node[anchor=east] {1}
(myand.in 2) node[anchor=east] {2}
(myand.out) node[anchor=west] {3}
; \end{circuitikz}

\begin{circuitikz}
\draw
(0,2) node[and port] (myand1) {}
(0,0) node[and port] (myand2) {}
(2,1) node[xnor port] (myxnor) {}
(myand1.out) -| (myxnor.in 1)
(myand2.out) -| (myxnor.in 2)
; \end{circuitikz}

In the case of NOT, there are only in and out (although for compatibility reasons in 1 is still defined and equal to in):

\begin{circuitikz}
\draw
(1,0) node[not port] (not1) {}
(3,0) node[not port] (not2) {}
(0,0) -- (not1.in)
(not2.in) -- (not1.out)
++(0,-1) node[ground] {} to[C] (not1.out)
(not2.out) -| (4,1) -| (0,0)
; \end{circuitikz}

6.1.2 Transistors

For NMOS, PMOS, NFET, NIGFETE, NIGFETD, PFET, PIGFETE, and PIGFETD transistors one has base, gate, source and drain anchors (which can be abbreviated with B, G, S and D):

\begin{circuitikz}
\draw
(0,0) node[nmos] (mos) {}
(mos.gate) node[anchor=east] {G}
(mos.drain) node[anchor=south] {D}
(mos.source) node[anchor=north] {S}
; \end{circuitikz}

\begin{circuitikz}
\draw
(0,0) node[pigfete] (pigfete) {}
(pigfete.G) node[anchor=east] {G}
(pigfete.D) node[anchor=north] {D}
(pigfete.S) node[anchor=south] {S}
(pigfete.bulk) node[anchor=west] {Bulk}
; \end{circuitikz}

Similarly NFET and PFET have gate, source and drain anchors (which can be abbreviated with G, S and D):

\begin{circuitikz}
\draw
(0,0) node[pjfet] (pjfet) {}
(pjfet.G) node[anchor=east] {G}
(pjfet.D) node[anchor=north] {D}
(pjfet.S) node[anchor=south] {S}
; \end{circuitikz}
For NPN, PNP, NIGBT, and PIGBT transistors the anchors are base, emitter, and collector anchors (which can be abbreviated with B, E, and C):

```latex
\begin{circuitikz}
\draw
(0,0) node[npn] (npn) {}
(npn.base) node[anchor=east] {B}
(npn.collector) node[anchor=south] {C}
(npn.emitter) node[anchor=north] {E};
\end{circuitikz}
```

Here is one composite example (please notice that the `xscale=1` style would also reflect the label of the transistors, so here a new node is added and its text is used, instead of that of `pn1p1`):

```latex
\begin{circuitikz}
\draw
(0,0) node[pnp] (pnp2) {2}
(pnp2.B) node[pnp, xscale=-1, anchor=B] (pnp1) {}
(pnp1) node {1}
(pnp1.C) node[npn, anchor=C] (npn1) {}
(pnp2.C) node[npn, xscale=-1, anchor=C] (npn2) {}
(pnp1.E) -- (pnp2.E) (npn1.E) -- (npn2.E)
(pnp1.B) node[circ] {} |- (pnp2.C) node[circ] {};
\end{circuitikz}
```

Similarly, transistors and other components can be reflected vertically:

```latex
\begin{circuitikz}
\draw
(0,0) node[pigfete, yscale=-1] (pigfete) {}
(pigfete.bulk) node[anchor=west] {Bulk}
(pigfete.G) node[anchor=east] {G}
(pigfete.D) node[anchor=south] {D}
(pigfete.S) node[anchor=north] {S};
\end{circuitikz}
```

6.1.3 Other tripoles

When inserting a thyristor, a triac or a potentiometer, one needs to refer to the third node–gate (`gate` or `G`) for the former two; wiper (`wiper` or `W`) for the latter one. This is done by giving a name to the bipole:
As for the switches:

```latex
\begin{circuitikz}
\draw
(0,0) node[spdt] (Sw) {} \\
(Sw.in) node[left] {in} \\
(Sw.out 1) node[right] {out 1} \\
(Sw.out 2) node[right] {out 2} \\
\end{circuitikz}
```

The ports of the mixer and adder can be addressed with numbers or west/south/east/north:

```latex
\begin{circuitikz}
\draw
(0,0) node[mixer] (mix) {} \\
(mix.1) node[left] {1} \\
(mix.2) node[below] {2} \\
(mix.3) node[right] {3} \\
(mix.4) node[above] {4} \\
\end{circuitikz}
```

The Wilkinson divider has:

```latex
\begin{circuitikz}
\draw
(0,0) node[wilkinson] (w) {\SI{3}{dB}} \\
(w.in) to[short,-o] ++(-0.5,0) \\
(w.out1) to[short,-o] ++(0.5,0) \\
(w.out2) to[short,-o] ++(0.5,0) \\
(w.in) node[below left] {\texttt{in}} \\
(w.out1) node[below right] {\texttt{out1}} \\
(w.out2) node[above right] {\texttt{out2}} \\
\end{circuitikz}
```

6.1.4 Operational amplifier

The op amp defines the inverting input (−), the non-inverting input (+) and the output (out) anchors:
There are also two more anchors defined, up and down, for the power supplies:

The fully differential op amp defines two outputs:

6.1.5 Double bipoles

All the (few, actually) double bipoles/quadrupoles have the four anchors, two for each port. The first port, to the left, is port A, having the anchors A1 (up) and A2 (down); same for port B. They also expose the base anchor, for labelling:
However:

\begin{circuitikz}
\draw (0,0) node[coupler] (c) {\SI{10}{dB}}
(c.1) to[short,-o] ++(-0.5,0)
(c.2) to[short,-o] ++(0.5,0)
(c.3) to[short,-o] ++(0.5,0)
(c.4) to[short,-o] ++(-0.5,0)
(c.1) node[below left] {1}
(c.2) node[below right] {2}
(c.3) node[above right] {3}
(c.4) node[above left] {4};
\end{circuitikz}

\begin{circuitikz}
\draw (0,0) node[coupler2] (c) {\SI{3}{dB}}
(c.1) to[short,-o] ++(-0.5,0)
(c.2) to[short,-o] ++(0.5,0)
(c.3) to[short,-o] ++(0.5,0)
(c.4) to[short,-o] ++(-0.5,0)
(c.1) node[below left] {1}
(c.2) node[below right] {2}
(c.3) node[above right] {3}
(c.4) node[above left] {4};
\end{circuitikz}

6.2 Input arrows

Two ports

With the option > you can draw an arrow to the input of the block diagram symbols.

\begin{circuitikz}
\draw (0,0) to[short,o-] ++(0.3,0)
to[lowpass,>] ++(2,0)
to[adc,>] ++(2,0)
to[short,-o] ++(0.3,0);
\end{circuitikz}

Multi ports

Since inputs and outputs can vary, input arrows can be placed as nodes. Note that you have to rotate the arrow on your own:

\begin{circuitikz}
\draw (0,0) node[mixer] (m) {}
(m.1) to[short,-o] ++(-1,0)
(m.2) to[short,-o] ++(0,-1)
(m.3) to[short,-o] ++(1,0)
(m.1) node[inputarrow] {}
(m.2) node[inputarrow,rotate=90] {};
\end{circuitikz}
6.3 Labels and custom twoport boxes

Some twoports have the option to place a normal label (l) and an inner label (t).

```
\begin{circuitikz}
\ctikzset{bipoles/amp/width=0.9}
\draw (0,0) to[amp,t=LNA,l_=$F{=}0.9\,$dB,o-o] ++(3,0);
\end{circuitikz}
```

6.4 Box option

Some devices have the possibility to add a box around them. The inner symbol scales down to fit inside the box.

```
\begin{circuitikz}
\draw
(0,0) node[mixer,box,anchor=east] (m) {}
\draw[amp,box,>,-o] ++(2.5,0)
(m.west) node[inputarrow] {} to[short,-o]
++(-0.8,0)
(m.south) node[inputarrow,rotate=90] {} --
++(0,-0.7) node[oscillator,box,anchor=north] {};
\end{circuitikz}
```

6.5 Dash optional parts

To show that a device is optional, you can dash it. The inner symbol will be kept with solid lines.

```
\begin{circuitikz}
\draw (0,0) to[amp,l=\SI{10}{dB}] ++(2.5,0);
\draw[dashed] (2.5,0) to[lowpass,l=opt.] ++(2.5,0);
\end{circuitikz}
```

6.6 Transistor paths

For syntactical convenience transistors can be placed using the normal path notation used for bipoles. The transistor type can be specified by simply adding a “T” (for transistor) in front of the node name of the transistor. It will be placed with the base/gate orthogonal to the direction of the path:

```
\begin{circuitikz}
\draw
(0,0) node[njfet] {1}
(-1,2) to[Tnfet=2] (1,2)
to[Tnfet=3, mirror] (3,2);
\end{circuitikz}
```

Access to the gate and/or base nodes can be gained by naming the transistors with the `n` or `name` path style:
The name property is available also for bipoles, although this is useful mostly for triac, potentiometer and thyristor (see 4.2.5).

7 Customization

7.1 Parameters

Pretty much all CircuiTi\textunderscore Z relies heavily on \texttt{pgfkeys} for value handling and configuration. Indeed, at the beginning of \texttt{circuitikz.sty} a series of key definitions can be found that modify all the graphical characteristics of the package.

All can be varied using the \texttt{\ctikzset} command, anywhere in the code.

Shape of the components \hspace{1em} (on a per-component-class basis)

\begin{verbatim}
\begin{circuitikz}
\draw (0,0) to[R=1<\ohm>] (2,0);
\ctikzset{bipoles/resistor/height=.6}
\draw (0,0) to[R=1<\ohm>] (2,0);
\end{circuitikz}
\end{verbatim}

\begin{verbatim}
\begin{circuitikz}
\draw (0,0) node[nand port] {};
\ctikzset{tripoles/american nand port/input height=.2}
\ctikzset{tripoles/american nand port/port width=.2}
\draw (0,0) node[nand port] {};
\end{circuitikz}
\end{verbatim}

Thickness of the lines \hspace{1em} (globally)

\begin{verbatim}
\begin{circuitikz}
\draw (0,0) to[C=1<\farad>] (2,0);
\ctikzset{bipoles/thickness=1}
\draw (0,0) to[C=1<\farad>] (2,0);
\end{circuitikz}
\end{verbatim}
Global properties Of voltage and current

\[\tikz \draw (0,0) to[R, v=1\v] (2,0); \par\]
\[\tikzset{voltage/distance from node=.1}\]
\[\tikz \draw (0,0) to[R, v=1\v] (2,0); \par\]

However, you can override the properties \texttt{voltage/distance from node}, \texttt{voltage/bump b} and \texttt{voltage/european label distance} on a per-component basis, in order to fine-tune the voltages:

\[\tikz \draw (0,0) to[C, i=$imath$] (2,0); \par\]
\[\tikzset{current/distance = .2}\]
\[\tikz \draw (0,0) to[C, i=$imath$] (2,0); \par\]

Admittedly, not all graphical properties have understandable names, but for the time it will have to do:

\[\tikz \draw (0,0) node[xnor port] {};\]
\[\tikzset{tripoles/american xnor port/aaa=.2}\]
\[\tikzset{tripoles/american xnor port/bbb=.6}\]
\[\tikz \draw (0,0) node[xnor port] {};\]

7.2 Components size

Perhaps the most important parameter is \texttt{\circuitikzbasekey/bipoles/length}, which can be interpreted as the length of a resistor (including reasonable connections): all other lengths are relative to this value. For instance:

7That is, how distant from the initial and final points of the path the arrow starts and ends.
8Controlling how high the bump of the arrow is — how curved it is.
9Controlling how distant from the bipole the voltage label will be.
\begin{circuitikz}[scale=1.2]
\draw
(0,0) node[anchor=east] {B}
ode[anchor=west] {20Ω}
(1,0) node[anchor=west] {v_x}
ode[anchor=west] {10Ω}
ode[anchor=west] {10Ω}
(3,2)
ode[anchor=west] {S}
ode[anchor=west] {5v_x}
(4,2)
ode[anchor=west] {5Ω}
ode[anchor=west] {S}
ode[anchor=west] {5v_x}
(4,0)
ode[anchor=west] {cI=$\frac{\siemens}{5}v_x$}
(3,2)
ode[anchor=west] {5Ω}
ode[anchor=west] {S}
ode[anchor=west] {5v_x}
(3,0)
ode[anchor=west] {20Ω}
ode[anchor=west] {B}
ode[anchor=west] {20Ω}
(1,2) node[anchor=west] {A}
ode[anchor=west] {10Ω}
ode[anchor=west] {A}
\end{circuitikz}

7.3 Colors

The color of the components is stored in the key \circuitikzbasekey/color. CircuiTiKZ tries to follow the color set in TikZ, although sometimes it fails. If you change color in the picture, please do not use just the color name as a style, like \texttt{[red]}, but rather assign the style \texttt{[color=red]}.

Compare for instance
\begin{circuitikz} \draw[red] (0,2) node[and port] (myand1) {} (0,0) node[and port] (myand2) {} (2,1) node[xnor port] (myxor) {} (myand1.out) -| (myxor.in 1) (myand2.out) -| (myxor.in 2) \end{circuitikz}

and

\begin{circuitikz} \draw[color=red] (0,2) node[and port] (myand1) {} (0,0) node[and port] (myand2) {} (2,1) node[xnor port] (myxor) {} (myand1.out) -| (myxor.in 1) (myand2.out) -| (myxor.in 2) \end{circuitikz}

One can of course change the color \textit{in medias res}:

\begin{circuitikz} \draw (0,0) node[pnp, color=blue] (pnp2) {} (pnp2.B) node[pnp, xscale=-1, anchor=B, color=brown] (pnp1) {} (pnp1.C) node[npn, anchor=C, color=green] (npn1) {} (pnp2.C) node[npn, xscale=-1, anchor=C, color=magenta] (npn2) {} (pnp1.E) -- (pnp2.E) (npn1.E) -- (npn2.E) (pnp1.B) node[circ] {} |- (pnp2.C) node[circ] {} \end{circuitikz}

The all-in-one stream of bipoles poses some challenges, as only the actual body of the bipole, and not the connecting lines, will be rendered in the specified color. Also, please notice the curly braces around the to:

\begin{circuitikz} \draw (0,0) to[V=1<\text{volt}>] (0,2) { to[R=1<\text{ohm}>, color=red] (2,2) } to[C=1<\text{farad}>] (2,0) -- (0,0) \end{circuitikz}

Which, for some bipoles, can be frustrating:
The only way out is to specify different paths:

And yes: this is a bug and not a feature...

8 FAQ

Q: When using \tikzexternalize I get the following error:

! Emergency stop.

A: The \texttt{tikz} manual states:

Furthermore, the library assumes that all \LaTeX\ pictures are ended with \texttt{\end{tikzpicture}}.

Just substitute every occurrence of the environment \texttt{circuitikz} with \texttt{tikzpicture}. They are actually pretty much the same.

Q: How do I draw the voltage between two nodes?

A: Between any two nodes there is an open circuit!

Q: I cannot write \texttt{to[R = $R_1=12V$]} nor \texttt{to[ospst = open, 3s]}: I get errors.

A: It is a limitation of the \textit{Ti\kern.16667em kZ} parser. Use \texttt{to[R = $R_\text{1=}12V$]} and \texttt{to[ospst = open{,} 3s]} instead.

9 Examples
\begin{circuitikz}[scale=1.2]
\draw
(0,0) node[anchor=east] {B}
 to[short, o-*] (1,0)
 to[R=20<\ohm>, *-*] (1,2)
 to[R=10<\ohm>, v=v_x] (3,2) -- (4,2)
 to[cI=$\frac{\siemens}{5} v_x$, *-*] (4,0) -- (3,0)
 (3,0) -- (1,0)
(1,2) to[short, -o] (0,2) node[anchor=east]{A}
;\end{circuitikz}

\begin{circuitikz}[scale=1]
\draw
(0,0) node[transformer] (T) {}
(T.B2) to[pD] ($(T.B2)+(2,0)$) -| (3.5, -1)
(T.B1) to[pD] ($(T.B1)+(2,0)$) -| (3.5, -1)
;\end{circuitikz}
\begin{circuitikz}[scale=1]\draw
(5,.5) node [op amp] (opamp) {}
(0,0) node [left] {U_{we}} to [R, l=R_d, o-*] (2,0)
to [R, l=R_d, *-*] (opamp.+)
to [C, l_=C_{d2}, *-] ($(opamp.+)+(0,-2)$) node [ground] {}
(opamp.out) |- (3.5,2) to [C, l_=C_{d1}, ++] (2,2) to [short] (2,0)
(opamp.-) -| (3.5,2)
(opamp.out) to [short, *-o] (7,.5) node [right] {U_{wy}};\end{circuitikz}
\begin{circuitikz}[scale=1.2, american]
\draw
(0,2) to[I=1\milli\ampere] (2,2)
to[R, l_=2\kilo\ohm, \textcolor{red}{\textbullet}-\textbullet] (0,0)
to[R, l_=2\kilo\ohm] (2,0)
to[V, v_=2\volt] (2,2)
to[\text{cspst}, l=t_0] (4,2) -- (4,1.5)
to[\text{generic}, i=i_1, v=v_1] (4,-.5) -- (4,-1.5)
(0,2) -- (0,-1.5) to[V, v_=4\volt] (2,-1.5)
to [R, l=1\kilo\ohm] (4,-1.5);
\begin{scope}[xshift=6.5cm, yshift=.5cm]
\draw [->] (-2,0) -- (2.5,0) node\text{anchor=west} {v_1/\volt};
\draw [->] (0,-2) -- (0,2) node\text{anchor=west} {$i_1/\SI{}{\milli\ampere}$} ;
\draw (-1,0) node\text{anchor=north} {-2} (1,0) node\text{anchor=south} {2}
(0,1) node\text{anchor=north west} {4} (0,-1) node\text{anchor=east} {-4}
(2,0) node\text{anchor=north west} {4}
(-1.5,0) node\text{anchor=south east} {-3};
\draw [thick] (-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5);
\draw [dotted] (-1,1) -- (-1,0) (1,-1) -- (1,0)
(-1,1) -- (0,1) (1,-1) -- (0,-1);
\end{scope}
\end{circuitikz}
\begin{circuitikz}[scale=1]
\ctikzset{bipoles/detector/width=.35}
\ctikzset{quadpoles/coupler/width=1}
\ctikzset{quadpoles/coupler/height=1}
\ctikzset{tripoles/wilkinson/width=1}
\ctikzset{tripoles/wilkinson/height=1}
\draw[help lines,red,thin,dotted] (0,-5) grid (5,5);
\draw
(-2,0) node[wilkinson](w1){}
(2,0) node[coupler] (c1) {}
(0,-2) node[coupler,rotate=90] (c3) {}
(w1.out1) .. controls ++(0.8,0) and ++(0,0.8) .. (c3.3)
(w1.out2) .. controls ++(0.8,0) and ++(0,-0.8) .. (c2.4)
(c1.1) .. controls ++(-0.8,0) and ++(0,0.8) .. (c3.2)
(c1.4) .. controls ++(-0.8,0) and ++(0,-0.8) .. (c2.1)
(w1.in) to[short,-o] ++(-1,0)
(w1.in) node[left=30] {LO}
(c1.2) node[match,yscale=1] {}
(c1.3) to[short,-o] ++(1,0)
(c1.3) node[right=30] {RF}
(c2.3) to[detector,-o] ++(0,1.5)
(c2.2) to[detector,-o] ++(0,1.5)
(c3.1) to[detector,-o] ++(0,-1.5)
(c3.4) to[detector,-o] ++(0,-1.5)
;
\end{circuitikz}
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{circuits.ee.IEC}
\usetikzlibrary{positioning}
\usepackage[compatibility]{circuitikz}
\ctikzset{bipoles/length=.9cm}
\begin{document}
\begin{tikzpicture}[circuit ee IEC]
\draw (0,0) to [resistor={name=R}] (0,2)
 to [diode={name=D}] (3,2);
\draw (0,0) to [*R=R_1] (1.5,0) to [*Tnpn] (3,0)
 to [*D](3,2);
\end{tikzpicture}
\end{document}

10 \textbf{Changelog}

The major changes among the different circuitikz versions are listed here. See \url{https://github.com/circuitikz/circuitikz/commits} for a full list of changes.

- Version 0.8.3 (2017-05-28)
 - Removed unwanted lines at to-paths if the starting point is a node without a explicit anchor.
 - Fixed scaling option, now all parts are scaled by bipoles/length
 - Surge arrester appears no more if a to path is used without [-]-options
 - Fixed current placement now possible with paths at an angle of around 280°
 - Fixed voltage placement now possible with paths at an angle of around 280°
 - Fixed label and annotation placement (at some angles position not changable)
 - Adjustable default distance for straight-voltages: `bipoles/voltage/straight label distance`
 - Added Symbol for bandstop filter
 - New annotation type to show flows using f=... like currents, can be used for thermal, power or current flows

- Version 0.8.2 (2017-05-01)
 - Fixes pgfkeys error using alternatively specified mixed colors(see pgfplots manual section “4.7.5 Colors”)
 - Added new switches “nes” and “nos”
 - Reworked arrows at spst-switches
 - Fixed direction of controlled american voltage source
 - “v<=" and “i<=" do not rotate the sources anymore(see them as “counting direction indication”, this can be different then the shape orientation); Use the option “invert” to change the direction of the source/apperance of the shape.
 - current label “i=“ can now be used independent of the regular label “l=“ at current sources
– rewrite of current arrow placement. Current arrows can now also be rotated on zero-length paths
– New DIN/EN compliant operational amplifier symbol “en amp”

• Version 0.8.1 (2017-03-25)
 – Fixed unwanted line through components if target coordinate is a name of a node
 – Fixed position of labels with subscript letters.
 – Absolute distance calculation in terms of ex at rotated labels
 – Fixed label for transistor paths (no label drawn)

• Version 0.8 (2017-03-08)
 – Allow use of voltage label at a [short]
 – Correct line joins between path components (to[...])
 – New Pole-shape -. to fill perpendicular joins
 – Fixed direction of controlled american current source
 – Fixed incorrect scaling of magnetron
 – Fixed: Number of american inductor coils not adjustable
 – Fixed Battery Symbols and added new battery2 symbol
 – Added non-inverting Schmitttrigger

• Version 0.7 (2016-09-08)
 – Added second annotation label, showing, e.g., the value of an component
 – Added new symbol: magnetron
 – Fixed name conflict of diamond shape with tikz.shapes package
 – Fixed varcap symbol at small scalings
 – New packet-option “straightvoltages, to draw straight(no curved) voltage arrows
 – New option “invert” to revert the node direction at paths
 – Fixed american voltage label at special sources and battery
 – Fixed/rotated battery symbol(longer lines by default positive voltage)
 – New symbol Schmitttrigger

• Version 0.6 (2016-06-06)
 – Added Mechanical Symbols (damper,mass,spring)
 – Added new connection style diamond, use (d-d)
 – Added new sources voosource and ioosource (double zero-style)
 – All diode can now drawn in a stroked way, just use globel option “strokediode” or stroke instead of full/empty, or D-. Use this option for compliance with DIN standard EN-60617
 – Improved Shape of Diodes:tunnel diode, Zener diode, schottky diode (bit longer lines at cathode)
 – Reworked igbt: New anchors G,gate and new L-shaped form Lnigbt, Lpigbt
 – Improved shape of all fet-transistors and mirrored p-chan fets as default, as pnp, pmos, pftet are already. This means a backward-incompatibility, but smaller code, because p-channels mosfet are by default in the correct direction(source at top). Just remove the ‘yscale=-1’ from your p-chan fets at old pictures.
- Version 0.5 (2016-04-24)
 - new option boxed and dashed for hf-symbols
 - new option solderdot to enable/disable solderdot at source port of some fets
 - new parts: photovoltaic source, piezo crystal, electrolytic capacitor, electromechanical device (motor, generator)
 - corrected voltage and current direction (option to use old behaviour)
 - option to show body diode at fet transistors

- Version 0.4
 - minor improvements to documentation
 - comply with TDS
 - merge high frequency symbols by Stefan Erhardt
 - added switch (not opening nor closing)
 - added solder dot in some transistors
 - improved ConTeXt compatibility

- Version 0.3.1
 - different management of color...
 - fixed typo in documentation
 - fixed an error in the angle computation in voltage and current routines
 - fixed problem with label size when scaling a tikz picture
 - added gas filled surge arrester
 - added compatibility option to work with Tikz’s own circuit library
 - fixed infinite in arctan computation

- Version 0.3.0
 - fixed gate node for a few transistors
 - added mixer
 - added fully differential op amp (by Kristofer M. Monisit)
 - now general settings for the drawing of voltage can be overridden for specific components
 - made arrows more homogeneous (either the current one, or latex’ bt pgf)
 - added the single battery cell
 - added fuse and asymmetric fuse
 - added toggle switch
 - added varistor, photoresistor, thermocouple, push button
 - added thermistor, thermistor ptc, thermistor ptc
 - fixed misalignment of voltage label in vertical bipoles with names
 - added isfet
 - added noiseless, protective, chassis, signal and reference grounds (Luigi «Liverpool»)

- Version 0.2.4
 - added square voltage source (contributed by Alistair Kwan)
– added buffer and plain amplifier (contributed by Danilo Piazzalunga)
– added squid and barrier (contributed by Cor Molenaar)
– added antenna and transmission line symbols contributed by Leonardo Azzinnari
– added the changeover switch spdt (suggestion of Fabio Maria Antoniali)
– rename of context.tex and context.pdf (thanks to Karl Berry)
– updated the email address
– in documentation, fixed wrong (non-standard) labelling of the axis in an example (thanks to prof. Claudio Beccaria)
– fixed scaling inconsistencies in quadrapoles
– fixed division by zero error on certain vertical paths
– introduced options straighlabels, rotatelabels, smartlabels

• Version 0.2.3
– fixed compatibility problem with label option from tikz
– Fixed resizing problem for shape ground
– Variable capacitor
– polarized capacitor
– ConTeXt support (read the manual!)
– nfet, nigfete, nifgetd, pfet, pigfete, pigfetd (contribution of Clemens Helfmeier and Theodor Borsche)
– njfet, pjfet (contribution of Danilo Piazzalunga)
– pigbt, nigbt
– backward incompatibility potentiometer is now the standard resistor-with-arrow-in-the-middle; the old potentiometer is now known as variable resistor (or vR), similarly to variable inductor and variable capacitor
– triac, thyristor, memristor
– new property “name” for bipoles
– fixed voltage problem for batteries in american voltage mode
– european logic gates
– backward incompatibility new american standard inductor. Old american inductor now called “cute inductor”
– backward incompatibility transformer now linked with the chosen type of inductor, and version with core, too. Similarly for variable inductor
– backward incompatibility styles for selecting shape variants now end are in the plural to avoid conflict with paths
– new placing option for some tripoles (mostly transistors)
– mirror path style

• Version 0.2.2 - 20090520
– Added the shape for lamps.
– Added options europeanresistor, europeaninductor, americanresistor and americaninductor, with corresponding styles.
– FIXED: error in transistor arrow positioning and direction under negative xscale and yscale.
• Version 0.2.1 - 20090503
 – Op-amps added
 – added options arrowmos and noarrowmos, to add arrows to pmos and nmos

• Version 0.2 - 20090417 First public release on CTAN
 – Backward incompatibility: labels ending with :angle are not parsed for positioning anymore.
 – Full use of TikZ keyval features.
 – White background is not filled anymore: now the network can be drawn on a background picture as well.
 – Several new components added (logical ports, transistors, double bipoles, ...).
 – Color support.
 – Integration with {siunitx}.
 – Voltage, american style.
 – Better code, perhaps. General cleanup at the very least.

• Version 0.1 - 2007-10-29 First public release
Index of the components

adc, 20
adder, 27
afuse, 11
ageneric, 9
american and port, 30
american controlled current source, 22
american controlled voltage source, 22
american current source, 17
american gas filled surge arrester, 15
american inductor, see L
american nand port, 31
american nor port, 31
american not port, 31
american or port, 30
american potentiometer, see pR
american resistor, see R
american voltage source, 17
american xor port, 31
american xor port, 31
ammeter, 9
amp, 21
antenna, 8
asymmetric fuse, see afuse

bandpass, 20
bandstop, 20
barrier, 15
battery, 17
battery1, 17
battery2, 17
buffer, 33

C, see capacitor
capacitor, 15
cground, 7
circ, 33
circulator, 27
cisourcesin, see controlled sinusoidal current source
closing switch, 19
controlled isourcesin, see controlled sinusoidal current source
controlled sinusoidal current source, 22
controlled sinusoidal voltage source, 22
controlled vsourcesin, see controlled sinusoidal voltage source
coupler, 30
coupler2, 30
csI, see controlled sinusoidal current source
cspst, see closing switch
csV, see controlled sinusoidal voltage source
currarrow, 33
cute inductor, see L
cvsourcesin, see controlled sinusoidal voltage source

D*, see full diode
D-, see stroke diode
dac, 20
damper, 19
dcisource, 18
dcvsource, 18
detector, 21
diamondpole, 34
do, see empty diode
dsp, 20
eC, see ecapacitor
ecapacitor, 15
eko, see ecapacitor
elemech, 28
empty diode, 11
empty led, 12
empty photodiode, 12
empty Schottky diode, 11
empty thyristor, 14
empty triac, 14
empty tunnel diode, 12
empty varcap, 12
empty Zener diode, 11
empty ZZener diode, 11
en amp, 33
esource, 18
european and port, 31
european controlled current source, 22
european controlled voltage source, 22
european current source, 17
european gas filled surge arrester, 15
european inductor, see L
european nand port, 32
european nor port, 32
european not port, 31
european or port, 31
european potentiometer, see pR
european resistor, see R
european variable resistor, see vR
european voltage source, 17
european xor port, 32
european xor port, 32

fd op amp, 33
fft, 21
full diode, 12
full led, 13

66
full photodiode, 12
full Schottky diode, 12
full thyristor, 14
full triac, 14
full tunnel diode, 12
full varcap, 13
full Zener diode, 12
full Zener diode, 12
full generic, 9
fuse, 11
generic, 9
gm amp, 33
ground, 7
gyror, 30
highpass, 20
inputarrow, 33
invschmitt, 32
ioosource, 18
isfet, 26
isourcesin, see sinusoidal current source
L, 16
lamp, 9
leD*, see full led
leD-, see stroke led
leDo, see empty led
Lnigbt, 24
lowpass, 20
Lpigbt, 24
magnetron, 27
mass, 19
match, 8
memristor, 10
mixer, 27
Mr, see memristor
ncs, see normal closed switch
nfet, 25
nground, 7
night, 23
pigfetd, 26
pigfete, 25
pigfete,solderdot, 25
pigfetebulk, 25
pjfet, 26
pmos, 23, 25
pmos,emptycircle, 25
pnp, 23
pnp,photo, 23
polar capacitor, 15
pR, 10
push button, 19
pvsource, 18
PZ, see piezoelectric
R, 10
rground, 7
rxantenna, 8

ocirc, 34
ohmmeter, 9
op amp, 32
open, 9
opening switch, 19
oscillator, 27
ospst, see opening switch
pC, see polar capacitor
pD*, see full photodiode
pD-, see stroke photodiode
pDo, see empty photodiode
pfet, 26
pground, 7
phaseshifter, 21
photoresistor, see phR
phR, 11
piattenuator, 21
piezoelectric, 15
pigbt, 23
pigfetd, 26
pigfete, 26
pigfetebulk, 26
pjfet, 26
plain amp, 33
pmos, 23, 25
pmos,emptycircle, 25
pnp, 23
pnp,photo, 23
polar capacitor, 15
pR, 10
push button, 19
pvsource, 18
PZ, see piezoelectric

schmitt, 32
sD*, see full Schottky diode
sD-, see stroke Schottky diode
sDo, see empty Schottky diode
sground, 7
short, 9
si, see sinusoidal current source
sinusoidal current source, 18
sinusoidal voltage source, 18
spdt, 28
spring, 19
spst, see switch
square voltage source, 18
squid, 15
sqV, see square voltage source
stroke diode, 13
stroke led, 13
stroke photodiode, 13
stroke Schottky diode, 13
stroke thyristor, 14
stroke tunnel diode, 13
stroke varcap, 13
stroke Zener diode, 13
stroke ZZener diode, 13
sV, see sinusoidal voltage source switch, 19
tattenuator, 21
tD*, see full tunnel diode
tD-, see stroke tunnel diode
tDo, see empty tunnel diode
tfullgeneric, 10
tgeneric, 9
tground, 7
thermistor, see thR
thermistor ntc, see thRn
thermistor ptc, see thRp
thermocouple, 11
thR, 11
thRn, 11
thRp, 11
thyristor, 14
TL, 16
tline, see TL
tlinestub, 8
toggle switch, 28
Tr, see triac
Tr*, see full triac
transformer, 29
transformer core, 29, 30
transmission line, see TL
triac, 14
Tro, see empty triac
tV, see vsourcetri
twoport, 20
txantenna, 8
Ty, see thyristor
Ty*, see full thyristor
Ty-, see stroke thyristor
Tyo, see empty thyristor
vamp, 21
variable american inductor, see vL
variable american resistor, see vR
variable capacitor, 15
variable cute inductor, see vL
variable european inductor, see vL
varistor, 10
vC, see variable capacitor
VC*, see full varcap
VC-, see stroke varcap
vcc, 8
VCo, see empty varcap
vco, 20
vee, 8
vL, 16
voltmeter, 9
voosource, 18
vphaseshifter, 21
vpiattenuator, 21
vR, 10
vsourcesin, see sinusoidal voltage source
vsourcesquare, see square voltage source
vsourcetri, 18
vtattenuator, 21
wilkinson, 28
zD*, see full Zener diode
zD-, see stroke Zener diode
zDo, see empty Zener diode
zzD*, see full ZZener diode
zzD-, see stroke ZZener diode
zzDo, see empty ZZener diode